

Given
$$S(x) = \frac{3}{2}x - 5$$

Linear Sunction
 $m = \frac{3}{2}$ Y-Int (0,-5) a (-5,0)
 $Graph S'(x)$
Find $S'(x)$
 $S(x) = \frac{3}{2}x - 5$
 $y = \frac{3}{2}x - 5$
 $x = \frac{3}{2}y - 5$
 $2x = 3y - 10$
 $S'(x) = \frac{2x + 10}{3}$
Verisy, we had $S(0) = -5$
 $S'(-5) = \frac{2(-5) + 10}{3} = -10 + 10$
 $S'(-5) = \frac{2(-5) + 10}{3} = -10 + 10$
 $S'(-5) = 0$

Given
$$S(x) = \frac{-1}{2}x + 1$$
 $r = \frac{5(x)}{(0,1)} + \frac{5(x)}{(0,1)} + \frac{5(x)}{(0,1)} + \frac{5(x)}{(0,1)} + \frac{5(x)}{(0,1)} + \frac{5(x)}{(1,0)} + \frac{5(x$

Sind
$$S^{-1}(x)$$
 Sor $S(x) = \sqrt{2} + 4$.
 $S(x) = \sqrt{2} + 4$ $y = \sqrt{2} + 4$ $y^{2} = \sqrt{2} + 4$
 $y = \sqrt{2} + 4$ $y^{2} = (\sqrt{2} + 4)^{2}$
 $\chi^{2} = (\sqrt{2} + 4)^{2}$
 $\chi^{2} = y + 4$ $S^{-2} - 4$
Verisy $S^{-1}(x)$ by the result of $S(5)$.
 $S(5) = \sqrt{5} + 4 = \sqrt{9} = [3]$
 $S^{-1}(3) = 3^{2} - 4 = 9 - 4 = [5] \sqrt{3}$

Griven
$$\Im(x) = \sqrt[3]{x-2}$$

1) Sind $\Im^{-1}(x)$
 $\Im(x) = \sqrt[3]{x-2}$ $\Im = \sqrt[3]{x-2}$ $\chi = \sqrt[3]{y-2}$
 $\chi^{3} = (\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} + 2 = \sqrt{y}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} = \sqrt{y-2}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} = \sqrt{y-2}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} = \sqrt{y-2}$ $\chi^{3} = \sqrt{y-2}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\chi^{3} = \sqrt{y-2}$ $\chi^{3} = \sqrt{y-2}$ $\chi^{3} = \sqrt{y-2}$
 $\Im^{-2}(\sqrt[3]{y-2})^{3}$ $\chi^{3} = \sqrt{y-2}$ $\Rightarrow \chi^{3} = \sqrt{y-2}$ $\chi^{3} =$

Composition Operation "S oS g(x)"

$$(f \circ g)(x) = f(g(x))$$

 $f \text{ composition } g \circ f x$
 $f(x) = 3x - 2$ $g(x) = 2x + 3$
Find $(f \circ g)(x) = f(g(x))$
 $= 3g(x) - 2 = 3(2x + 3) - 2$
 $= 6x + 9 - 2$
 $= 6x + 9 - 2$
 $= 6x + 1 - 2$
 $= 6x + 1 - 2$
 $= 6x - 1$

$$\begin{aligned} & S(x) = x^{2} + 2 & g(x) = \sqrt{x-2} & x \ge 0 \\ & Sor & S(x) \\ & Sor & S(x) \\ & and \\ & Jind & (S \circ g)(x) = S(g(x)) & y \ge 2 \\ & = [g(x)]^{2} + 2 & g(x), \\ & = [g(x)]^{2} + 2 & g(x), \\ & = [\sqrt{x-2}]^{2} + 2 = x - 2 + 2 \\ & = [X] \\ & Find & (g \circ S)(x) = g(S(x)) \\ & = \sqrt{x^{2}+2-2} = \sqrt{x^{2}} = [X] \end{aligned}$$

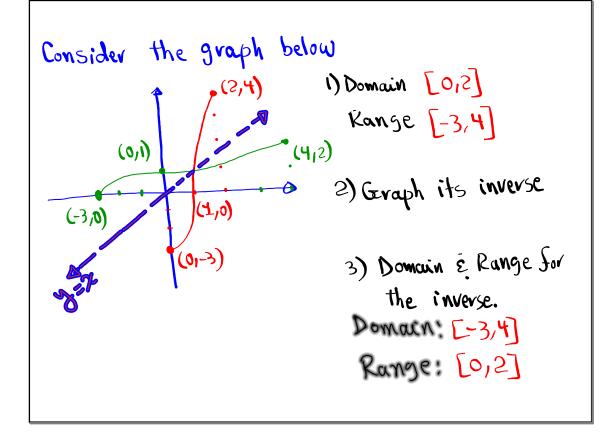
$$\begin{aligned} \hat{\mathbf{y}}(\mathbf{x}) &= \frac{1}{3} \,\mathbf{x} - 4 & \mathbf{y}(\mathbf{x}) = 3\mathbf{x} + 12 \\ 1) \, \hat{\mathbf{y}}_{\text{ind}} & (\mathbf{y} \circ \mathbf{g})(\mathbf{x}) \\ & (\hat{\mathbf{y}} \circ \mathbf{g})(\mathbf{x}) = \hat{\mathbf{y}} (\mathbf{g}(\mathbf{x})) = \frac{1}{3} \,\mathbf{g}(\mathbf{x}) - 4 \\ &= \frac{1}{3} (3\mathbf{x} + 12) - 4 \\ &= \frac{1}{3} (3\mathbf{x} + 12) - 4 \\ &= \frac{1}{3} \cdot 3\mathbf{x} + \frac{1}{3} \cdot 12 - 4 \\ &= \mathbf{x} + \frac{1}{3} \cdot \frac{1}{3} \mathbf{x} - 4 \\ &= \mathbf{x} + \frac{1}{3} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \cdot 12 - 4 \\ &= \mathbf{x} + \frac{1}{3} \cdot \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \cdot 12 - 4 \\ &= \mathbf{x} + \frac{1}{3} \cdot \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \cdot 12 \\ &= 3 \, (\frac{1}{3} \mathbf{x} - 4) + 12 \\ &= 3 \cdot \frac{1}{3} \mathbf{x} - 3 \cdot 4 + 12 \\ &= \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \cdot 12 = \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x} + \frac{1}{3} \mathbf{x} - \frac{1}{3} \mathbf{x}$$

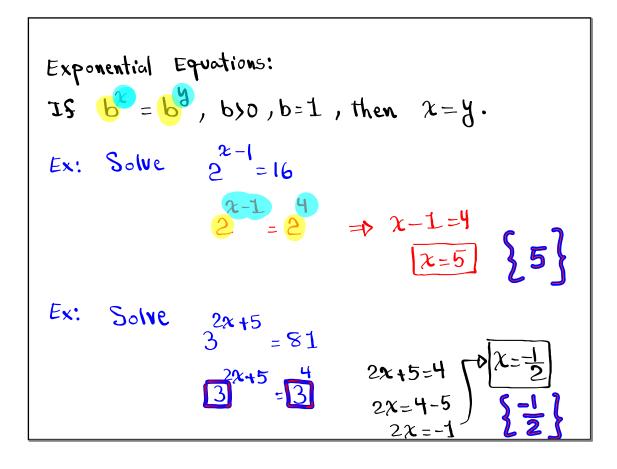
Г

I

If
$$(f \circ g)(x) = x$$
 and $(g \circ f)(x) = x$, then
 $f(x)$ and $g(x)$ are inverse of
each other.
Ex: $f(x) = 2x - 3$ $g(x) = \frac{x+3}{2}$
Find $(f \circ g)(x) = f(g(x)) = 2g(x) - 3 = 2\frac{(x+3)}{2} - 3$
 $= x + 3 - 3 = [X]$
Find $(g \circ f)(x) = g(f(x)) = \frac{f(x) + 3}{2} = \frac{2x - 3 + 3}{2}$
 $= \frac{2x}{2} = [X]$
what do You conclude? $(f \circ g)(x) = x$ and $g \circ f(x) = x$
 $g(x) = f'(x)$ They are inverse of
each other.
 $f'(x) = g(x)$

$$\frac{\Im(x) = \Psi^{\chi}}{2} \xrightarrow{\chi | \Im(x)}{-1 | \Psi^{1} = \frac{1}{4} = .25} \xrightarrow{\chi^{2} | \Im(x)}{-2 | \Psi^{2} = \frac{1}{6}} \xrightarrow{\Im^{2} | \Im(x)}{-2 | \Psi^{2} = \frac{1}{6}} \xrightarrow{\Im^{2} | \Im(x)}{-2 | \Psi^{2} = \frac{1}{6}} \xrightarrow{\Im^{2} | \Im(x)} \xrightarrow{\Im^{2} | \Im(x)}{-2 | \Psi^{2} = \frac{1}{6}} \xrightarrow{\Im^{2} | \Im^{2} = \frac$$



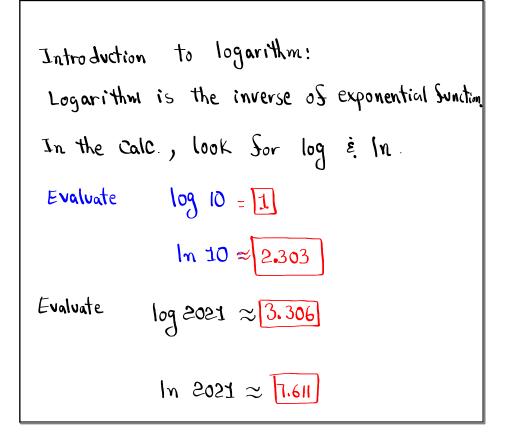


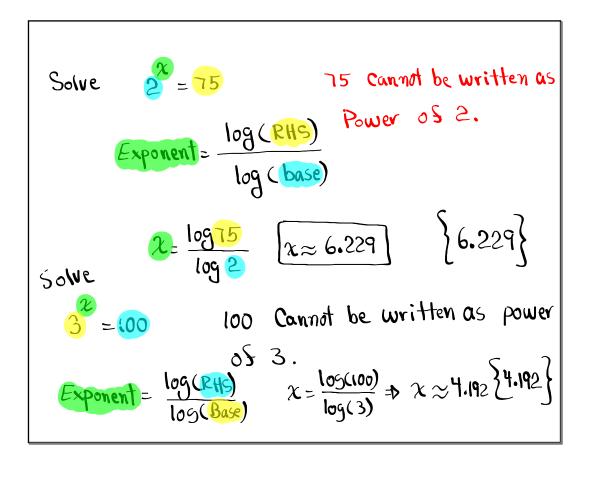
Ex: Solve
$$x^{2^{2}-4x} = 64$$

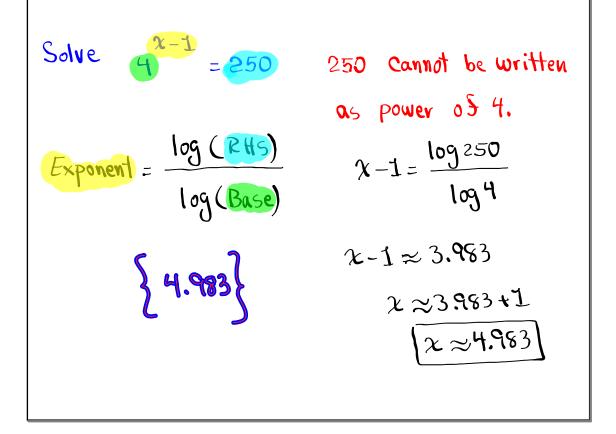
 $y^{2^{2}-4x} = 64$
 $y^{2^{2}-4x} = 3$
 $x^{2}-4x = 3$
 $x^{2}-4x = 3 + 4$
 $\frac{1}{2}(-4) = -2$
 $(x-2)^{2}-7$
 $x-2=\pm\sqrt{7}$
 $x=2\pm\sqrt{7}$

Solve
$$x - 3 = 4 + 2$$

 $8 = 4$
 $(a^{3})^{x-3} = (2^{2})^{x+2}$
 $(2^{m})^{n} = x^{mn}$
 $3(x-3) = 2(x+2)$
 $3x - 9 = 2x + 4$
 $\{13\}$
Hint:
 $8 = 2^{3}$
 $4 = 2^{2}$
 $(x^{m})^{n} = x^{mn}$
 $3(x-3) = 2(x+2)$
 $3x - 9 = 2x + 4$
 $3x - 2x = 4 + 9$
 $\overline{x = 13}$







Solve
$$5^{2+3} = 2021$$

 2021 cannot be written as
Power 0S 5.
Exponent = $\frac{\log(RHS)}{\log(Base)}$ $x+3 = \frac{\log(2021)}{\log(5)}$
 $x+3 \approx 4.729$
 $x \approx 4.729$.
 $x \approx 1.729$

Solve
$$2x - 7$$

 $6 = 50$
Hint:
 50 Cannot be written as
Power 0.5 6.
Exponent = $\frac{\log(RHS)}{\log(Base)}$
 $2x - 7 = \frac{\log 50}{\log 6}$
 $2x - 7 \approx 2.183$
 $2x \approx 9.183$
 $x \approx 9.183$
 $x \approx 9.183$
 $x \approx 9.183$
 $x \approx 9.183$

Solve
Solve

$$22 + 1 = (2345)$$

 $= (2345)$
 $103 (Base)$
 $32 + 1 = \frac{103(2845)}{103(32)}$
 $32 + 2 = \frac{103(2345)}{103(32)}$
 $33 + \frac{103(235)}{103(32)}$
 $33 +$

```
Final Exam:
1) No School Wednesday
2) Thursday

Start as early as 6:30
1) Part 1 = → All graphs
2) Part 2 = → Everything else.
3) Review exam 1 & 2
4) Review recent materials
5) Must show work.
Work must be Similar to my lectures.
6) Submission must one Sile Sov each part.
7) Procedure is the Jame as exam 1 & 2.
```